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ABSTRACT	

Abstract	–	The	Soil	Moisture	Active	Passive	(SMAP)	L-band	microwave	radiometer	

is	a	conical	scanning	instrument	designed	to	measure	soil	moisture	with	4%	volumetric	

accuracy	at	40-km	spatial	resolution.	SMAP	is	NASA’s	first	Earth	Systematic	Mission	

developed	in	response	to	its	first	Earth	science	decadal	survey.	Here,	the	design	is	reviewed	

and	the	results	of	its	first	year	on	orbit	are	presented.	Unique	features	of	the	radiometer	

include	a	large	6-meter	rotating	reflector,	fully	polarimetric	radiometer	receiver	with	

internal	calibration,	and	radio-frequency	interference	detection	and	filtering	hardware.	

The	radiometer	electronics	are	thermally	controlled	to	achieve	good	radiometric	stability.	

Analyses	of	on-orbit	results	indicate	the	electrical	and	thermal	characteristics	of	the	

electronics	and	internal	calibration	sources	are	very	stable	and	promote	excellent	gain	

stability.	Radiometer	NEDT	<	1	K	for	17-ms	samples.	The	gain	spectrum	exhibits	low	noise	

at	frequencies	>1	mHz	and	1/f	noise	rising	at	longer	time	scales	fully	captured	by	the	

internal	calibration	scheme.	Results	from	sky	observations	and	global	swath	imagery	of	all	

four	Stokes	antenna	temperatures	indicate	the	instrument	is	operating	as	expected.		
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I. Introduction	

National	Aeronautics	and	Space	Administration’s	(NASA’s)	Soil	Moisture	Active	

Passive	(SMAP)	satellite	was	launched	into	a	685-km	near	sun-synchronous	6AM/PM	orbit	

on	January	31,	2015.	SMAP’s	L-band	microwave	radiometer	was	commissioned	in	February	

and	March	and	has	now	reached	its	milestone	of	one	year	of	successful	operation.	A	three-

dimensional	rendering	of	the	SMAP	observatory	in	its	fully	deployed	configuration	is	

shown	in	Fig.	1.	SMAP	is	the	third	in	a	series	of	modern	L-band	radiometers	after	the	

European	Space	Agency’s	(ESA)	Soil	Moisture	Ocean	Salinity	(SMOS)	satellite	launched	in	

2009	and	NASA’s	Aquarius	instrument	aboard	Argentina’s	Comisión	Nacional	de	

Actividades	Espaciales	(CONAE)	Satelite	de	Aplicaciones	Cientificas	(SAC)-D	satellite	

launched	in	2011	[1]-[3].	SMAP’s	primary	science	objective	is	to	provide	soil	moisture	

measurements	with	an	uncertainty	<	0.04	m3m-3	for	terrain	having	vegetation	water	

contents	up	to	5	kg/m2.	For	the	radiometer,	this	objective	requires	radiometric	uncertainty	

<	1.3	K	(with	fore	and	aft	averaging)	with	<	40-km	spatial	resolution.	

SMAP	is	NASA’s	first	Earth	Systematic	Mission	developed	in	response	to	its	first	

Earth	science	decadal	survey	[4].	The	SMAP	mission	high-level	science	requirements	and	

derived	instrument	requirements	related	to	the	radiometer	are	shown	in	Table	1	(adapted	

from	[5]).	Early	in	its	mission,	SMAP	provided	10-km	resolution	soil	moisture	globally	

every	three	days	using	a	combined	active-passive	microwave	instrument.	The	instrument	

comprises	a	radiometer	and	a	synthetic	aperture	radar	(SAR),	which	both	share	a	single	

antenna.	In	July,	the	radar	ceased	transmissions	and	has	remained	in	receive-only	mode	

since	[6].	By	itself	the	radiometer	enables	40-km	resolution	soil	moisture	with	the	same	

three-day	global	coverage.	Nonetheless,	with	its	conical-scanning	(real	aperture)	antenna	



and	advanced	RFI	mitigation	capabilities,	the	SMAP	radiometer	is	providing	high-quality	

brightness	temperature	measurements	of	Earth’s	land,	ice	and	ocean	surfaces.		

TABLE	1.	SMAP	RADIOMETER	SCIENCE	AND	INSTRUMENT	REQUIREMENTS.	

Scientific	Measurement	Requirements	 Instrument	Functional	Requirements	
Soil	Moisture:	
0.04	m3m-3	volumetric	uncertainty	(1-
σ)	in	the	top	5	cm	for	vegetation	water	
content	≤	5	kg	m-2;	
Hydroclimatology	at	40-km	resolution	

L-Band	Radiometer	(1.41	GHz):	
Polarization:	V,	H,	T3	and	T4	
Project	3-dB	beamwidth	≤	40	km	
Radiometric	Uncertainty	≤	1.3	K	
Constant	40°	incidence	angle	

Sample	diurnal	cycle	at	consistent	
time	of	day	(6am/6pm	Equator	
crossing);	
Global,	3-day	(or	better)	revisit	

Swath	Width:	1000	km	
Minimize	Faraday	rotation		

Observation	over	minimum	of	three	
annual	cycles	

Baseline	three-year	mission	life	

	

The	two	key	technology	innovations	–	the	large	scanning	6-meter	reflector	and	the	

total	power	radiometer	receiver	with	advanced	RFI	detection	and	filtering	capabilities	–	

combined	make	the	SMAP	radiometer	unique.	On-orbit	results	of	SMAP’s	RFI	mitigation	

capabilities	are	discussed	in	[7].	In	other	ways,	the	SMAP	radiometer	derives	its	

requirements	and/or	design	from	past	radiometer	systems.	The	front-end	architecture	

with	a	6-meter	antenna	shared	with	the	radar	was	inherited	from	the	preliminary	design	of	

the	Hydrosphere	State	(Hydros)	Earth	System	Science	Pathfinder	(ESSP)	mission,	which	

was	selected	as	an	alternate	ESSP	by	NASA	but	did	not	proceed	with	development	in	2005	

[5].		SMAP’s	antenna	is	conical	scanning	with	a	full	360-degree	field	of	regard.	However,	

there	are	several	key	differences	(some	unique)	from	previous	low-frequency	conical	

scanning	radiometers	like	WindSat	or	Advanced	Microwave	Scanning	Radiometer	for	the	

Earth	Observing	System	(AMSR-E)	[8][9].	Most	obvious	is	the	lack	of	external	warm-load	

and	cold-space	reflector,	which	normally	provides	radiometric	calibration	through	the	feed	

horn.	Rather,	SMAP’s	internal	calibration	scheme	is	based	on	the	Jason	Microwave	

Radiometer,	the	Aquarius	push	broom	radiometers	and	the	SMOS	radiometer	using	



reference	load	switches	and	coupled	noise	diodes	[9]-[11].	Switching	of	the	internal	

calibrations	sources	is	synchronized	with	the	radar	operation,	as	it	is	on	Aquarius,	so	the	

radiometer	oversamples	the	footprint.	Both	SMAP	and	Aquarius	utilize	this	oversampling	

technique	for	time-domain	detection	and	filtering	of	radio-frequency	interference	[12][13].	

Like	WindSat,	SMAP	measures	all	four	Stokes	parameters	with	fore	and	aft	viewing;	unlike	

WindSat,	SMAP	uses	coherent	detection	for	the	third	and	fourth	Stokes	parameters	

implemented	in	a	digital	receiver	backend	[14].	The	first	two	modified	Stokes	parameters,	

TV	and	TH,	are	the	primary	science	channels	used	by	the	soil	moisture	retrieval	algorithm	

[15].	The	T3	channel	measurement	provides	correction	of	Faraday	rotation	caused	by	the	

ionosphere	[16].	The	T4	channel	is	measured	as	a	consequence	of	the	receiver	design	and	

the	data	are	used	to	detect	RFI.	The	most	significant	difference	SMAP	has	from	all	past	

space	borne	radiometer	systems	is	its	aggressive	hardware	and	algorithm	approach	to	RFI	

detection	and	filtering	[13][7].	The	requirement	to	detect	and	filter	RFI	drives	and	exploits	

features	of	the	SMAP	design.	

	 Here,	the	main	features	of	the	SMAP	radiometer	design,	results	of	early	orbit	

operations,	and	observations	for	the	first	year	up	through	March	2016	are	presented.	

Section	II	covers	the	observatory,	swath	and	antenna	design.	Section	III	describes	the	

radiometer	electronics	and	their	calibration	before	launch.	Activities	and	results	of	pre-

launch	calibration	and	early	operations	on-orbit	are	discussed	in	Sections	IV	and	V.	A	

review	of	one	year	of	data	is	discussed	in	Sections	VI	&	VII.	



II. Observatory	and	Antenna	Design	

SMAP	orbits	Earth	at	685-km	altitude	with	the	spacecraft	pointing	to	geodetic	nadir.	

The	instrument	antenna	points	35.5°	away	from	nadir	and	generates	a	2.4°	3-dB	

beamwidth	for	the	radiometer.	This	geometry	creates	an	instantaneous	field-of-view	

(IFOV)	of	36-by-47	km	with	an	Earth	incidence	angle	(EIA)	of	40°.	The	distance	across	the	

swath	is	1000	km	from	IFOV	center-to-center.	This	swath	width,	combined	with	the	orbit	

parameters,	allows	the	whole	of	Earth’s	surface	to	be	covered	in	three	days	(except	for	

typical	pole	holes)	with	no	gaps	at	the	equator.		

Imaging	is	accomplished	by	conical	scanning	the	antenna	beam	with	a	full	360°	field	

of	regard.	The	antenna	rotates	at	14.6	rpm	completing	a	scan	with	3200-km	circumference	

every	4.1	seconds.	Along-scan	averaging	occurs	over	14-ms,	which	smears	the	beam	along	

scan	to	create	a	39-by-47	km	effective	field-of-view	(EFOV).	Along-scan	sampling	occurs	

every	11	km,	which	is	faster	than	the	20-km	Nyquist	criterion.	With	the	spacecraft	moving	

at	6.8	km/s	speed	over	ground,	the	along	track	(or	across	scan)	sampling	at	center	of	swath	

is	28	km	–	slightly	slower	than	the	24-km	Nyquist	criterion.	The	spatial	sampling	geometry	

near	center	of	swath	is	shown	in	Fig.	2.		

The	instrument	antenna,	shared	between	the	radiometer	and	the	SAR,	is	composed	

of	a	6-m	offset	reflector	fed	by	a	dual	polarized,	dual	band	feed-horn.	With	a	focal	length	of	

4.2	m	and	a	projected	diameter	of	6	m,	a	Kevlar	net	shapes	the	deployable	mesh	reflector	

into	a	triangularly	faceted	surface	with	an	RMS	error	compared	to	a	perfect	paraboloid	less	

than	2mm	or	about	1%	wavelength.	Optimized	for	both	the	radiometer	(1.4015-1.4255	

GHz)	and	the	SAR	(1.2168-1.2982	GHz)	frequency	bands,	the	feed-horn	includes	an	Ortho-

Mode-Transducer	(OMT)	to	separate	horizontal	and	vertical	polarizations.	The	OMT	is	



partly	made	of	titanium	to	thermally	isolate	the	horn,	which	is	exposed	to	the	thermal	

radiation	environment,	from	the	radiometer	electronics.		

Fig.	3	shows	a	comparison	between	the	CAD	model	of	the	SMAP	observatory	with	

the	reflector	fully	deployed	and	its	RF	model	used	to	predict	the	antenna	performance.	All	

significant	details	relative	to	21-cm	wavelength	were	included	into	the	model	to	get	the	

best	possible	accuracy	in	the	radiation	pattern.	The	reflector	antenna	radiation	pattern	was	

not	measured	before	launch;	therefore,	a	very	accurate	antenna	pattern	knowledge	was	

required	to	verify	performance	requirements	(e.g.,	beam	efficiency)	and	for	the	initial	

radiometer	calibration.	A	1/10th	scale	model	replicating	all	major	aspects	of	the	flight	

hardware	was	also	designed,	built	and	tested	to	validate	the	RF	model.	Final	requirement	

verification	was	then	done	with	a	combination	of	flight	feed	assembly	measurements,	scale	

model	predictions	and	measurements	and	flight	model	predictions.	A	horizontal	

polarization	pattern	cut	along	the	along-scan	direction	(horizontal	direction)	is	plotted	in	

Fig.	4.	The	main	lobe	has	a	half-power	beamwidth	of	2.4	degrees.	The	backlobes,	primarily	

due	to	feed	pattern	spillover	and	edge	diffraction,	fall	into	the	space	region.	The	beam	

efficiency	for	vertical	and	horizontal	polarizations	is	88%,	with	most	of	the	non-main	lobe	

contribution	directed	towards	space.	

III. Radiometer	Electronics	Design	

The	radiometer	electronics	consist	of	antenna	feed	network,	radiometer	front	end	

(RFE),	radiometer	back	end	(RBE),	and	radiometer	digital	electronics	(RDE).	These	

subsystems	are	shown	in	Fig.	5	with	signal	flow	from	right	to	left.	The	antenna	feed	

network	includes	an	external	noise	source	and	diplexers	to	separate	radar	frequencies	



from	the	radiometer	path.	The	external	noise	source	signal	is	added	to	the	antenna	signal,	

but	is	not	used	as	a	primary	calibration	source	and	is	present	for	redundancy.	The	

diplexers	include	additional	filtering	to	limit	the	amount	of	RFI	entering	the	RFE.	The	RFE	

contains	the	primary	internal	calibration	switches	and	noise	source,	RF	amplification	and	

additional	filtering.	The	internal	noise	source	signal	is	added	to	the	reference	signals	to	

provide	RFI-free	gain	calibration.	The	RBE	down-converts	the	RF	signals	to	a	lower	IF	

frequency	using	a	common	phase-locked	local	oscillator	(PLO).	The	reference	clock	for	the	

PLO	also	clocks	the	analog-to-digital	converters	(ADCs)	in	the	RDE.	The	ADCs	sample	and	

quantize	the	IF	signals	for	processing	by	a	Field	Programmable	Gate	Array	(FPGA)-based	

Digital	Signal	Processor	(DSP).	The	DSP	generates	detected	power	for	the	full	passband	

(fullband	data)	and	for	16	channels	spaced	evenly	across	the	passband	(subband	data).	The	

RDE	generates	timing	signals	needed	to	control	the	internal	calibration	sources	and	

synchronizes	radiometer	integration	with	the	radar	timing.	Finally,	data	are	packetized	by	

the	RDE	and	sent	to	spacecraft	mass	storage	for	later	downlink	to	the	ground.		

The	RF	system	is	designed	to	make	linear	radiometric	measurements	in	the	

presence	of	RFI	up	to	an	Interference-to-Noise	Ratio	(INR)	of	6	dB	or	an	effective	added	

noise	temperature	of	2000	K	due	to	RFI	out	of	a	typical	500	K	system	temperature.		Above	

2000	K,	the	accumulators	in	the	integrator	logic	saturate.	Cascaded	filtering	and	

amplification	sufficient	to	operate	each	stage	at	a	maximum	power	of	24-dB	below	1-dB	

compression	keeps	the	error	contribution	from	nonlinearity	due	to	RFI	signals	negligible	

over	this	range.	The	total	system	frequency	response	is	shown	in	Fig.	6.	Note,	the	response	

is	30	dB	below	peak	at	the	allocation	edges	at	1400	MHz	and	1427	MHz.	The	roll-off	to	



>100	dB	is	much	faster	on	the	low	side	because	of	the	presence	of	air	search	radars	and	

less	stringent	on	the	high	side	because	of	fewer	known	RFI	sources.		

The	digital	backend	replaces	conventional	diode	detectors	with	moment	

accumulators	and	complex	cross-correlators.	The	first	four	moments	of	the	ADC	outputs	

are	estimated	by	the	RDE.	The	science-processing	algorithm	computes	the	second	central	

moment	using	the	first	and	second	moments	to	estimate	the	total	power	[17].	These	data	

are	used	to	estimate	antenna	temperature.	The	kurtosis	(used	by	the	RFI	detectors)	is	

computed	in	a	similar	manner	using	raw	moments.	The	complex	cross-correlation	

coefficient	is	also	measured	by	the	RDE	and	is	used	in	the	science-processing	algorithm	to	

estimate	third	and	fourth	Stokes	parameters.	

Third	and	fourth	Stokes	parameters	are	measured	by	the	radiometer	to	compensate	

for	Faraday	polarization	basis	rotation	caused	by	the	ionosphere	and	to	be	used	as	RFI	

detectors.	The	driving	requirement	on	the	receiver	was	to	minimize	(relative	to	24-MHz	

bandwidth)	differential	group	delay	between	the	vertical	and	horizontal	channels.	Because	

the	complex	correlation	is	measured,	any	mean	phase	difference	between	vertical	and	

horizontal	polarizations	can	be	compensated	by	a	complex	coefficient	multiplication	in	the	

science-processing	algorithm.	Phase	slope	difference,	however,	would	attenuate	the	

correlation	between	signals,	and	is	minimized	in	the	design	by	using	symmetry	and	

avoiding	unnecessarily	long	cables	of	different	lengths.		

The	radiometer	integrator	logic	operates	synchronously	with	the	radar	whereby	the	

radiometer	integrates	received	power	during	the	radar	receive	window	and	blanks	during	

the	transmit	window.	Timing	is	shown	in	Fig.	7.	The	fundamental	unit	of	integration	is	300	

μs	contained	within	a	pulse-repetition	interval	(PRI).	Fullband	data	are	integrated	at	this	



rate.	Subband	data,	however,	are	integrated	1.2	ms	over	a	packet	defined	as	four	PRI’s.	

During	a	footprint,	eight	(8)	packets	are	utilized	to	view	earth	for	9.6	ms	and	four	(4)	

packets	to	view	the	internal	reference	load	and	noise	source	or	calibration	for	4.8	ms.	

Because	of	a	small	amount	of	blanking	during	radar	transmit	and	calibration	switching	

setup	time,	this	cycle	occurs	on	a	17	ms	period.	

The	radiometer	timing,	antenna	beamwidth	and	scan	rate,	and	ground	software	

averaging	are	coordinated	so	the	equivalent	low-pass	processes	work	together	to	produce	

Nyquist	sampled	footprints	along	the	scan	direction.		The	frequency	responses	of	the	

processes	are	shown	in	Fig.	8.		The	on-board	integrators	are	represented	by	the	two	

rightmost	traces	(dash-dot	and	dash)	for	1	and	4	PRI’s,	respectively.	The	8-packet	(32-PRI)	

integration	done	in	ground	software	to	form	a	footprint	has	a	low-pass	response	indicated	

by	solid	trace	labeled	L1B_TB.	The	Level	1	product	footprint	process	has	a	3-dB	point	at	30	

Hz,	which	fully	samples	the	low-pass	process	created	by	the	antenna	pattern	sweeping	

across	the	earth.	The	bump	in	the	footprint	response	near	100	Hz	is	caused	by	the	

interleaving	of	antenna	looks	with	calibration	looks,	which	robs	integration	time	from	the	

scene.	A	balance	is	struck	in	the	algorithm	design	between	increased	NEDT	and	vs.	

decreased	∆G/G	noise.	The	high-frequency	energy	at	100	Hz	in	the	antenna	averaging	

response	is	merely	white	noise	aliased	into	the	footprints	and	equivalent	to	the	increase	in	

NEDT	due	to	limiting	antenna	integration	time.	Finally,	the	dotted	line	marked	“antenna”	

shows	the	equivalent	low-pass	response	of	the	antenna	approximated	by	a	Gaussian	beam	

(sweeping	along-scan	in	azimuth	at	770	km/sec	speed	over	ground)	to	naturally	occurring	

thermal	radiation.	



The	four	packets	of	calibration	observations	are	partitioned	into	two	packets	for	

reference	load	and	two	packets	for	reference	plus	noise	diode.	Conventionally,	noise	is	

injected	prior	to	a	reference	switch;	however,	on	SMAP	as	on	Aquarius,	RFI	is	such	a	

concern	that	the	noise	injection	is	done	behind	the	switch	to	ensure	the	radiometer	can	be	

calibrated	regardless	of	RFI	entering	the	antenna.	The	noise	source	on	SMAP,	unlike	

Aquarius,	is	a	single	noise	source	split	coherently	between	the	vertical	and	horizontal	

receiver	channels.	This	method	was	chosen	because	the	digital	receiver	has	negligible	

cross-polarization	coupling	and	the	total	power	and	cross-correlation	detectors	can	be	

calibrated	essentially	independently.	The	phase	of	the	correlated	noise	source	was	set	at	

40o	to	enable	calibration	of	the	real	and	imaginary	outputs	of	the	correlator	using	the	same	

calibration	state.		

The	radiometer	science-processing	algorithm	uses	these	pairs	of	reference	and	

noise	diode	counts	to	compute	gain	and	offset	coefficients,	which	are	then	further	averaged	

over	a	longer	time	period	(multiple	footprints)	to	reduce	estimation	noise.	The	gain	and	

offset	are	computed	twice	per	footprint	in	the	science-processing	algorithm	and	then	

averaged	with	a	5000-tap,	uniform,	centered	non-causal	filter.	The	frequency	responses	of	

these	filters	are	discussed	in	the	on-orbit	data	section	below.	Careful	attention	was	paid	to	

thermal	control	to	allow	gain	and	offset	coefficient	averaging	over	10’s	of	seconds	and	to	

help	maintain	radiometer	stability	on	orbital	and	seasonal	time-scales.	The	combination	of	

passive	thermal	design	with	an	active	proportional	controller	achieves	0.1oC/orbit	within	

the	RFE	[22][23].	Worst-case	orbital	results	are	also	discussed	in	the	on-orbit	results	

section	below.	



IV. Pre-Launch	Calibration	

The	pre-launch	calibration	of	the	radiometer	includes	both	a	radiometric	and	a	

polarimetric	exercise	to	characterize	temperature	dependence	of	the	reference	and	noise	

source	looks	and	receiver	phase	imbalance	relative	to	the	feedhorn	input.	The	radiometric	

calibration	was	accomplished	using	techniques	similar	to	[18]	and	polarimetric	calibration	

[19].	The	goal	of	the	radiometric	calibration	is	to	characterize	the	losses	(or	equivalent)	

and	noise	diode	added	noise	temperature,	represented	by	the	simplified	loss	model	shown	

in	Fig.	9,	for	use	in	the	science-processing	algorithm.	Likewise,	the	goal	of	the	polarimetric	

calibration	is	to	determine	the	polarimetric	efficiency	and	phase	differences	of	the	receiver	

channels.		

In	the	science-processing	algorithm,	the	antenna	temperature	referenced	to	the	

feedhorn	output/OMT	input	is	computed	from	radiometer	output	counts	using	a	two-point	

calibration	model:	

	 	𝑇%& = 𝑇%()* −
,-./0,1

,23,50,-./
𝑇%67	 (1)	

where	𝑇′,()*	is	the	internal	reference	load	noise	temperature	and	𝑇′,67	the	coupled	noise	

source	temperature	referred	to	the	feedhorn	output/OMT	input.	The	radiometer	output	

counts	are	represented	by	𝑐: ,	where	x	indicates	reference	(ref),	antenna	(A),	and	noise	

diode	+	reference	(ND,R)	states.	The	intermediate	antenna	temperature	(1)	is	input-

referred	to	the	feedhorn	aperture	by	correcting	for	feed	and	radome	losses	and	physical	

temperatures:	 	 	 	 	

	 𝑇& = 𝐿(<=>?)𝐿*))=𝑇′& − 𝐿(<=>?) 𝐿*))= − 1 𝑇*))= − 𝐿(<=>?) − 1 𝑇(<=>?) 		 (2)	



where	Lx	and	Tx		are	the	loss	factors	and	physical	temperatures	for	x	equal	to	the	radome	

and	feed.	The	internal	calibration	temperatures	can	be	expressed	as	functions	of	the	

lumped	losses	and	physical	temperatures	shown	in	the	loss	model	Fig.	9:	

	 𝑇%()* = 𝐿ABC𝐿,>DE𝐿=FE𝑇GHI − 𝐿ABC𝐿,>DE 𝐿=FE − 1 𝑇=FE	 (3a)	

−𝐿ABC 𝐿,>DE − 1 𝑇,>DE − 𝐿ABC − 1 𝑇ABC 	

𝑇%67 = 𝐿ABC𝐿,>DE𝐿=FE𝐿JKFL,M𝑇67	 (3b)	

Alternately,	(3a)	and	(3b)	can	be	approximated	using	a	linear	model:	

	 𝑇()*% = 𝑇NOP + 𝑐NOP,RS*∆𝑇NOP + 𝑐TUV,()*∆𝑇TUV + 𝑐WXYZ,()*∆𝑇WXYZ + 𝑐[\Z,()*∆𝑇[\Z + 𝑇>**J)L(4a)	

	 𝑇]7% = 𝑇,67 + 𝑐NOP,67∆𝑇NOP + 𝑐TUV,67∆𝑇TUV + 𝑐WXYZ,67∆𝑇WXYZ + 𝑐[\Z,67∆𝑇[\Z	 (4b)	

where	coefficients	𝑐:	are	derived	from	pre-launch	thermal	vacuum	(TVAC)	testing	and	∆𝑇:	

indicates	physical	temperature	deviation	away	from	the	reference	temperature	used	in	the	

linear	model	fitting.		

The	TVAC	tests	consisted	of	a	series	of	data	collections	with	the	radiometer	at	

different	combinations	of	controlled	temperatures	for	each	zone.	The	first	TVAC	test	was	

limited	to	the	radiometer	electronics	and	the	coaxial	components	portion	of	the	feed	

network.	Each	major	component	was	installed	on	an	individually	controlled	heater	plate,	

were	connected	together	using	spaceflight	coaxial	cables,	and	temperatures	were	then	

varied	±10°C	about	20°C	after	[20].	A	coaxial	calibration	source	comprising	a	temperature	

stabilized	matched	termination	and	coldFET	was	used	to	provide	two-point	calibration.	

The	coldFET	was	calibrated	against	a	liquid	nitrogen	coaxial	standard	load.	A	second	TVAC	

test	was	performed	with	the	OMT	and	feedhorn	installed	viewing	a	flat	ferrite	tile	absorber	

plate.	While	data	taken	in	the	first	were	used	to	obtain	the	sensitivity	of	the	coupler,	

diplexer	and	the	internal	calibration	sources	to	their	physical	temperature,	the	second	test	



yielded	the	sensitivity	of	the	calibration	to	OMT	and	feedhorn	temperatures.	The	resulting	

calibration	coefficients	are	shown	in	Table	2.	There	is	a	relative	lack	of	sensitivity	of	the	

reference	load	antenna-referred	temperature	due	to	variations	in	feed	network	

components;	however,	the	reference	load	temperature	is	quite	sensitive	to	changes	in	the	

RFE	temperature	as	indicated	by	the	20%	value	of	cRFE,	likely	due	to	changes	in	thermal	

gradients.	The	noise	source	has	a	temperature	sensitivity	of	𝑐GHI/𝑇67 =	2.5	and	2.7	ppt/oC	

due	to	RFE	temperature	changes	for	the	vertical	and	horizontal	polarization	channels,	

respectively.	

	

		

Table 2    SMAP Radiometer Calibration Coefficients (Full Band) 

  𝑐GHI  𝑐ABC 𝑐,>DE 𝑐=FE Note 

𝑇()*%  V-pol 0.205 4.78´10-5 -0.052 -0.073 𝑇>**J)L =0.225 K 

H-pol 0.208 5.23´10-5 -0.056 -0.064 𝑇>**J)L =0.741 K  

𝑇67%  V-pol 1.18 0.015 0.036 0.002 𝑇67 = 465 K 

H-pol 1.24 0.012 0.053 0.048 𝑇67 = 452 K 

    

 

	

The	radiometer’s	complex	cross	correlator	is	used	to	measure	third	and	fourth	

Stokes	parameters.	The	radiometer	has	a	symmetric	design,	but	the	two	polarization	

channels	are	not	necessarily	phase	balanced	or	spectrally	balanced.	A	digitally	controlled	

correlated	noise	source	with	adjustable	phase	was	used	to	determine	that	the	polarimetric	

efficiency	of	the	system	was	effectively	unity	(0.999).	The	two	channels	have	the	same	

passband	response	and	negligible	group	delay	difference.	Nonetheless,	as	the	received	



signals	propagate	along	the	receiver	channels,	the	relative	correlation	angle	will	be	

changed,	as	the	receiver’s	channel	phase	imbalance	is	nonzero.	Scattering	parameter	

measurements	versus	temperature	indicate	phase	imbalance	is	quite	stable.	For	example,	

the	RFE	inter-channel	phase	imbalance	varies	0.03°/°C.	This	amount	is	negligible	

considering	performance	of	the	thermal	control	system.	Thus,		phases	were	measured	at	

room	temperature	using	different	techniques	during	integration	and	calibration	of	the	

radiometer.	

First,	network	analyzer	measurements	show	the	internal	calibration	noise	diode,	

which	is	imbedded	inside	the	RFE,	has	a	phase	imbalance	(from	the	RFE	input	to	output)	of	

1.6°.	Positive	sign	means	that	the	v-pol	channel	has	longer	equivalent	electrical	length.	The	

path	lengths	between	the	RFE	and	RDE	are	unequal,	creating	an	additional	-41°	phase	shift,	

which	was	measured	by	network	analyzer	and	verified	using	the	radiometer	correlator.	

Finally,	to	calibrate	the	channel	phase	imbalances	in	the	radiometer	before	the	RFE	inputs,	

a	polarizing	grid	over	LN2	calibration	target	was	used.	The	principle	of	this	test	is	to	create	

linearly	polarization	radiation	at	the	feedhorn	input.	Rotating	the	grid	generates	a	third	

Stokes	parameter	with	a	correlation	coefficient	rotated	by	the	receiver’s	total	phase	

imbalance	in	the	complex	plane.	Excluding	the	channel	phase	imbalance	after	the	RFE	

inputs,	the	channel	phase	imbalance	from	the	feedhorn	to	the	RFE	inputs	is	39°.	These	

phase	differences	are	used	in	the	science-processing	algorithm	to	produce	third	and	fourth	

Stokes	antenna	temperatures.	



V. 	Early	On-Orbit	Activities	

The	stowed	configuration	of	the	SMAP	antenna	offers	an	unobstructed	view	of	deep	

space	to	the	feedhorn	(see	Fig.	10).	The	radiometer	was	powered	on	Feb.	12,	2015	to	take	

advantage	of	the	stowed	configuration.	Using	this	well	known	calibration	point,	one	

calibration	parameter	in	the	radiometer	can	be	adjusted.	The	noise	source	was	chosen	

because	it	has	the	largest	uncertainty	remaining	from	pre-launch	calibration	testing.	

Estimated	cold	space	antenna	temperatures	were	expected	to	be	approximately	4	K	±	9	K	

(3-σ)	based	on	pre-launch	calibration	parameters	and	their	uncertainties.	The	noise	source	

pre-launch	uncertainty	of	1%	is	largely	responsible	for	errors	in	this	configuration.	Other	

error	sources	include	internal	reference	load	temperature,	front-end	component	loss,	and	

antenna	feed	pattern	uncertainties.	A	typical	orbit	of	antenna	temperature	measurements	

is	shown	in	Fig.	11.	The	results	based	on	pre-launch	calibration	for	V-pol	are	5	K	too	low;	

however,	after	noise	source	correction,	the	measured	antenna	temperature	matches	the	

expected	cold-space	antenna	temperatures	quite	well.	The	H-pol	results	showed	only	1	K	

initial	discrepancy	and	similar	agreement	after	correction.	The	radiometer	was	powered	

off	on	Feb.	13	to	prepare	for	reflector	deployment.	

After	accomplishing	the	space	view,	the	reflector	was	deployed	in	a	static	

configuration.	The	radiometer	was	powered	on	again	Feb.	27-28,	2015	to	provide	

information	to	aid	reflector	deployment	verification.	The	reflector	was	pointed	aft	of	the	

spacecraft	and	the	nadir	angle	was	predicted	to	be	slightly	smaller	than	that	when	spinning	

because	of	boom	deflection	due	to	centrifugal	force.	The	results	of	this	test	were	favorable.	

Both	brightness	temperature	response	and	NEDT	measurements	are	as	expected.	As	

shown	in	Fig.	12,	brightness	temperature	response	over	land,	ice,	and	ocean	are	reasonable	



(note	the	color	scale	is	limited	to	emphasize	variations	over	land).	High	brightness	

temperatures	are	seen	over	rain	forest	in	South	America	and	West	Africa	and	desert	in	

North	Africa	and	Middle	East.	NEDT	values	estimated	by	the	science-processing	algorithm	

are	0.8	K	and	1.1	K	over	ocean	and	land,	respectively.	These	values	are	consistent	with	

instrument	design	specifications.		

On	March	31,	2015,	the	radiometer	reflector	was	rotating	at	operational	speed	and	

the	instrument	electronics	were	powered	back	on.	After	a	check	out	period,	the	radiometer	

was	declared	operational.	It	has	been	operating	successfully	since.	

VI. First	Year	on	Orbit	

The	radiometer	error	budget	is	dominated	by	NEDT	because	of	the	narrow	time-

bandwidth	product	(9.6	ms	by	24	MHz)	available	to	the	system.	The	orbit	average	NEDT	for	

all	four	Stokes	antenna	temperatures	is	shown	in	Fig.	13	during	the	first	year	of	operation.	

The	orbit	average	NEDT	is	consistent	with	an	average	over	land,	ocean	and	ice	scenes	and	

is	stable	throughout	the	year	with	mean	value	0.90	K	and	0.96	K	for	horizontal	and	vertical	

polarization,	respectively.	The	NEDT	for	third	and	fourth	Stokes	parameters	is	1.34	K,	

which	is	approximately	the	expected	factor	of	√2	larger	than	NEDT	for	vertical	and	

horizontal	polarizations.	

Transient	temperatures,	particular	those	that	cause	changes	in	thermal	gradients	

within	the	RFE,	can	cause	drift	in	systematic	calibration	biases	(in	scale	and/or	offset).	

While	the	science-processing	algorithm	compensates	for	temperature	effects,	the	model	

has	residual	uncertainty.	The	radiometer	is	thermally	stabilized	by	passive	thermal	design	

and	active	thermal	control	to	minimize	the	impacts	of	the	changing	thermal	environment.	



Several	platinum	resistance	thermometers	(PRTs)	are	used	to	measure	the	temperatures	

and	thermal	stability	of	the	radiometer	components.	The	PRT	measurements	of	the	front-

end	over	the	first	year	are	shown	in	Fig.	14.	Each	PRT	is	read	every	20	seconds	and	has	

0.01°C	resolution	and	±0.5°C	accuracy.	During	most	of	the	past	year	and	when	under	

normal	operating	conditions	the	temperatures	are	quite	stable.	The	diplexers,	couplers,	

and	OMT	are	seen	to	vary	<1°C	seasonally	including	during	the	south-pole	solar	eclipse	

season	(May	through	July)	in	panel	(a).	Even	if	left	uncompensated,	the	variation	in	

calibration	bias	due	to	these	front-end	thermal	variations	is	<0.1	K.	The	feed	horn	varies	in	

temperature	quite	a	bit	more,	about	14°C	peak-to-peak,	but	its	ohmic	loss	is	nearly	

negligible	and	varies	2ppm/°C.	The	temperatures	of	the	internal	calibration	sources	has	

0.4°C	peak-to-peak	variation	shown	in	panel	(b).	The	internal	noise	source	has	a	

temperature	coefficient	of	3	ppt/°C	(referred	to	the	feedhorn),	which	results	in	a	

calibration	dependence	of	0.3	K	that	is	compensated	in	the	science-processing	algorithm.	

The	steps	in	temperature	early	in	the	operation	year	are	due	to	various	activities	during	

the	first	two	weeks	of	instrument	commissioning.	The	occasional	1°C	impulses	are	due	to	

instrument	power	cycling	as	a	consequence	of	satellite	operations.	These	power	cycles	do	

interrupt	the	calibration	temporarily;	however,	the	instrument	recovers	within	a	few	orbits	

and	returns	to	steady	state	thereafter.		

The	short-term	orbital	variations	in	temperature	are	shown	in	Fig.	15	for	the	worst-

case	peak	of	the	eclipse	season.	During	this	orbit	the	feedhorn	varied	2°C	and	the	other	

feed	network	components	0.2°C.	The	internal	calibration	sources	varied	0.1°C	over	the	

orbit.	These	variations	have	negligible	impact	on	the	intra-orbital	stability	of	the	receiver	

calibration.	



Noise	diode	bias	current	and	avalanche	breakdown	voltage	are	measured	every	8	

days	during	normal	operations	and	plotted	in	Fig.	16.	The	bias	current	is	stable	to	2μA	

peak-to-peak	and	breakdown	voltage	1.4mV	peak-to-peak.	Based	on	laboratory	

measurements	of	diode	components,	the	calibration	dependence	on	these	DC	bias	

variations	is	250	ppm.	

The	combination	of	noise	diode	bias	stability	and	thermal	stability	lead	to	excellent	

radiometer	gain	stability	on	orbital	time	scales.	The	radiometer	switching	provides	noise	

diode	and	reference	load	counts	every	8.4	ms.	These	are	used	to	compute	gain	and	offset	

coefficients	with	some	corrections	applied	for	temperature.	The	calibration	coefficients	are	

then	averaged	with	a	5000-tap	moving	average	window	spanning	42	seconds	of	elapsed	

time.	Thus,	it	is	necessary	for	the	hardware	gain	to	be	stable	with	periods	<	84	seconds	so	

the	process	Nyquist	samples	the	hardware	behavior.	The	gain	spectrum	and	averaging	

filter	response	are	shown	in	Fig.	17.	The	gain	is	stable	(<<10-5)	above	1	mHz	(1000-second	

period)	so	the	42-second	filter	is	averaging	over	small	fluctuations.	The	orbit	period	of	

5900	seconds	is	marked	for	reference.	The	temperature	correction	algorithm	compensates	

for	orbital-scale	dependence	in	gain.	Below	1	mHz,	the	gain	spectrum	begins	to	rise	with	f	-α	

type	behavior;	however,	this	characteristic	is	fully	captured	by	the	calibration	scheme.		

Noise	diode	calibration	sources	are	known	to	drift	on	long	timescales	while	on	orbit	

(e.g.,	[24])	and	this	behavior	was	no	exception	on	SMAP’s	precursor	Aquarius,	which	

exhibited	an	exponential	drift	with	0.5%	amplitude	and	100-day	time	constant	[25].	Noise	

source	drift	of	0.5%	is	equivalent	to	1	K	drift	over	the	ocean.	The	calibration	drift	over	land	

due	to	noise	source	drift	is	less	because	the	land	antenna	temperatures	are	closer	to	the	

internal	reference	load	temperature.	SMAP	uses	the	same	basic	design	as	Aquarius	for	the	



noise	sources,	so	long-term	drift	is	expected	and	is	being	monitored.	Because	of	the	

potentially	long	time	constant	of	100	days,	it	is	too	early	to	determine	if	SMAP	is	exhibiting	

exactly	similar	behavior.	Nonetheless,	SMAP	stability	is	monitored	against	a	globally	

averaged	ocean	model	(based	on	that	described	in	[26])	with	results	reported	in	[27]-[29].	

Calibration	drift	cast	as	a	relative	change	in	noise	diode	intensity	is	plotted	in	Fig.	18.	The	

lower	curve	shows	the	estimated	drift	including	several	steps	downward	and	upward	due	

to	intentional	and	unintentional	power	cycles	of	the	radar	transmitter.	The	upper	curve	is	

an	estimate	of	the	drift	due	to	changes	in	radiometer	hardware	over	the	year	with	the	steps	

removed.	The	vertical	dashed	lines	indicate	the	start	and	finish	of	solar	eclipse	season	for	

the	spacecraft	during	the	southern	hemisphere	winter.	The	bump	downwards	in	

calibration	immediately	after	eclipse	ends	is	likely	due	to	some	uncompensated	front-end	

thermal	effect.	As	discussed	in	[27]-[29],	there	remains	uncertainty	in	radome	and	reflector	

emissivity	that	is	confounded	with	noise	source	drift.	The	separation	of	the	errors	and	

correction	thereof	are	topics	of	on-going	calibration	activities.	Nonetheless,	the	stability	of	

SMAP	is	consistent	with	Aquarius,	although	the	physical	mechanisms	and	temporal	

characteristics	are	not	yet	fully	resolved.	

VII. Stokes	Imagery	

SMAP	provides	global	coverage	with	a	3-day	revisit	on	an	8-day	repeat	orbit	cycle.	

Antenna	temperature	data	averaged	over	one	such	cycle	for	all	four	modified	Stokes	

parameters	are	shown	in	Fig.	19.	These	data	are	during	the	third	week	of	April	2016	from	

[20].	The	impact	of	moisture	in	the	soil	on	antenna	temperature	in	Fig.	19	(a)	vertical	and	

(b)	horizontal	polarizations	is	quite	evident	across	the	northern	hemisphere,	including	the	



Midwest	and	the	State	of	Texas	in	the	United	States	where	extreme	precipitation	led	to	

flooding	resulting	in	low	brightness	temperatures	180-190	K	shown	in	blue	on	the	cool	end	

of	the	color	scale.	Other	physical	features	of	note	include	the	high	emissivity	of	the	Amazon	

rainforest	and	the	dry	Sahara	shown	in	red	at	the	warm	end	of	the	color	scale.	Note,	the	

color	scale	was	truncated	at	(168-282	K)	to	emphasize	contrast	in	antenna	temperature	of	

land.	This	truncation	necessarily	saturates	at	ocean	antenna	temperatures,	where	

dominance	of	Fresnel	reflectivity	would	otherwise	be	evident	in	contrast	between	vertical	

and	horizontal	polarizations.	Strong	contrast,	however,	is	seen	in	regions	of	sea	ice	with	

190	and	230	K	antenna	temperatures	at	horizontal	and	vertical	polarizations,	respectively.		

The	third	Stokes	antenna	temperature	Fig.	19	(c)	shows	a	strong	dipole	feature	

caused	by	ionospheric	Faraday	rotation.	The	dipole	in	third	Stokes	arises	from	alignment	of	

earth’s	magnetic	field	with	direction	of	propagation	of	observed	microwave	emission.	The	

amplitude	of	third	Stokes	is	strongest	over	ocean	because	of	the	low	emission	and	strong	

polarization	caused	by	its	Fresnel	reflectivity	and	weaker	over	land	(especially	Amazon	and	

Congo	rainforests)	due	to	higher	emissivity	and	depolarization	due	to	scattering.	There	are	

also	artifacts	in	the	image	due	to	combining	ascending	and	descending	orbits.	The	fourth	

Stokes	parameter,	on	the	other	hand,	is	nearly	non-existent	in	Fig.	19	(d).	The	color	scale	is	

slightly	offset	to	account	for	a	global	bias,	likely	due	to	antenna	cross-polarization	mixing.	

The	continents	are	slightly	more	negative	than	ocean	and	their	outlines	are	evident	

because	of	antenna	cross-pol	mixing,	which	couples	some	combination	of	first	and	second	

into	fourth	Stokes.	Finally,	there	are	unique	patterns	of	fourth	Stokes	antenna	temperature	

over	Greenland	and	Antarctica,	perhaps	vestiges	of	the	polarimetric	signature	witnessed	by	

WindSat	[30].	



VIII. Discussion	

One	year	of	nearly	continuous	operation	of	the	SMAP	L-band	microwave	radiometer	

was	marked	on	March	31,	2016.	Two	key	technologies	–	the	6-meter	scanning	reflector	and	

the	RFI	detection	and	filtering	digital	backend	with	polarimetric	capabilities	–	combine	to	

make	the	radiometer	unique.	Radiometer	footprints	sampled	at	17-ms	provide	angular	

Nyquist	sampling	and	exhibit	NEDT	<1	K.	On-board	calibration	combined	with	good	

thermal	stability	yields	excellent	on-orbit	gain	stability.	Global	swath	imagery	of	all	four	

Stokes	antenna	temperatures	shows	good	results.	Vertical	and	horizontal	polarized	

channels	display	expected	behavior	for	land,	ocean	and	ice	scenes.	The	third	Stokes	channel	

responds	strongly	to	ionospheric	Faraday	rotation.	The	fourth	Stokes	channel	indicates	

little	circularly	polarized	emission,	except	over	large	ice	sheets.	The	instrument	continues	

to	operate	equally	well	as	of	this	writing.	Thus,	the	radiometer	meets	the	key	and	driving	

mission	requirements	needed	to	measure	soil	moisture	at	40-km	spatial	resolution	and	

0.04	volumetric	uncertainty.		
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products.		
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Fig.	1.	Soil	Moisture	Active	Passive	(SMAP)	observatory	in	fully	deploy	configuration.	Image	
Credit:	NASA/JPL-Caltech.	

	
	
	
	
	
	

	
Fig.	2.	Footprint	spacing	near	sub-satellite	track.
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Fig.	3.	SMAP	observatory	(a)	solid	model	from	mechanical	design	software	and	(b)	mesh	model	for	

3D	antenna	analysis	software.	
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Fig.	4.	Antenna	pattern	cut	of	horizontal	polarization	along	the	antenna	scanning	direction	for	(a)	

the	full	pattern	and	(b)	the	main	lobe.	Comparison	is	between	calculated	and	measured	data	for	the	

1/10	SMAP	scale	model.	

	

	

	

	



	
	
Fig.	5.	Radiometer	Block	Diagram	including	feed	network,	Radiometer	Front-End	(RFE),	Back-End	

(RBE),	and	Digital	Electronics	(RDE).	Signal	flow	is	from	right	to	left.		

	

	
Fig.	6.	Frequency	response	of	SMAP	microwave	radiometer.	This	response	combines	RF,	IF	and	

digital	filters.	Vertical	dotted	lines	indicate	the	spectrum	allocation	at	1400	to	1427	MHz.	
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Fig.	7.	Timing	of	radiometer	sampling	for	a	PRI,	a	packet,	and	a	footprint.	
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Fig.	8.	Representative	frequency	response	of	averaging	performed	in	radiometer	operation	and	

processing.	The	two	rightmost	traces	(dash-dot	and	dash)	show	the	low-pass	response	of	the	on-

board	boxcar	integrator	over	one	and	four	PRI,	respectively.	The	solid	trace	shows	the	frequency	

response	of	the	calibrated	antenna	temperatures	found	in	the	Level	1B_TB	data	product.	Finally,	the	

dotted	line	marked	“antenna”	shows	the	equivalent	low-pass	response	of	the	antenna	beam	

(sweeping	along-scan	in	azimuth)	to	naturally	occurring	thermal	radiation.		
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Fig.	9.	Simplified	calibration	model	showing	lumped	losses	and	physical	temperatures.	

	
	

	

	

	

Fig.	10.	Spacecraft	model	shows	feedhorn	viewing	cold	space	with	stowed	reflector.	
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Fig.	11.	Antenna	temperature	(V-pol)	measured	in	stowed	configuration	showing	pre-	and	post-

launch	calibration	results	compared	to	modeled	cold-space	antenna	temperature	.	The	initial	result	

is	biased	5	K	low	consistent	with	pre-launch	calibration	uncertainty.	H-pol	measurements	showed	a	

smaller	1-K	difference.	
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Fig.	12.	Horizontally	polarized	brightness	temperature	(K)	measured	with	static	(non	rotating)	

antenna.	Width	of	the	swath	is	40-km	and	is	exaggerated	here	for	clarity.	

	 	



	

	
Fig.	13.	Radiometric	resolution	(NEDT)	daily	averaged	(over	land,	ocean,	and	ice)	during	first	year	

of	operations	for	all	four	Stokes	brightness	temperatures.	The	third	and	fourth	Stokes	parameters	

(top	curves)	have	NEDT	√2	larger	than	vertical	and	horizontal	polarizations	as	expected.	 	
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(a)	
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Fig.	14.	Temperatures	of	(a)	feed	network	and	(b)	internal	reference	load	and	noise	source	for	

horizontal-polarization	during	first	year	of	operations.		
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(a)	
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Fig.	15.	Temperatures	of	(a)	feed	network	and	(b)	internal	reference	load	and	noise	source	for	

horizontal-polarization	over	on	orbit	on	June	23,	2015	near	the	peak	thermal	effect	of	eclipse	

season.	
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(a)	

	
(b)	

Fig.	16.	Noise	source	bias	history	measured	on	an	8-day	period	during	first	year	of	operations.	(a)	

Current	bias	variation	is	within		±1.1μA	or	±180ppm	and	(c)	avalanche	voltage	varies	±0.7mV	or	

±80ppm.	
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Fig.	17.	Radiometer	gain	stability	and	gain	averaging	filter	responses.	The	rightmost	trace	is	the	

response	of	the	on-board	sampling	of	noise-diode	and	reference	counts	every	8.4	ms.	The	science	

processing	software	averages	5000	gain	estimates	together,	which	span	42	seconds.	The	orbit	cycle	

is	marked	at	5900	seconds.	The	spectrum	of	gain	coefficient	fluctuation,	the	left	most	trace,	reveals	

an	increasing	spectrum	below	1	mHz.	
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Fig.	18.	Radiometer	calibration	stability	cast	as	gain	drift	during	first	year	of	operation	determined	

from	comparison	to	globally-averaged	ocean	model	(lower	curve).	The	two	steps	in	April	are	due	to	

intentional	change	in	physical	temperature	during	early	commissioning	activities.	The	step	near	

June	14	was	due	to	an	intentional	power	cycle.	The	final	large	step	in	July	is	due	to	termination	of	

radar	transmission.	The	upper	curve	is	the	same	noise	source	drift	with	the	radar-induced	steps	

removed.	The	vertical	dashed	lines	indicated	the	start	and	finish	of	solar	eclipse	season	experienced	

by	SMAP	in	the	southern	hemisphere	winter.		 	

Apr'15 Jul'15 Oct'15 Jan'16 Apr'16

"
T N

D
/T
N
D
(%
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2



	
	

	

Fig.	19.		SMAP	radiometer	modified	Stokes	antenna	temperatures	gridded	and	averaged	during	1-7	

September	2015.	The	four	panels	show	(a)	vertically	polarized,	(b)	horizontally	polarized,	(c)	third	

and	(d)	fourth	Stokes	parameters,	respectively.	
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